We use cookies to create the best experience for you. Keep on browsing if you are OK with that, or find out how to manage cookies.
Nobody downloaded yet

Shell and tube heat exchanger design - Coursework Example

Comments (0) Cite this document
Heat exchangers operations are guided by the fact that heat transfer is a product of temperature variation between cold process stream and hot process stream. A thin solid layer is used in separation of the two streams. …
Download full paper
Shell and tube heat exchanger design
Read TextPreview

Extract of sample
Shell and tube heat exchanger design

Download file to see previous pages... The wall has to be conducive to allow heat exchange and still be sufficiently strong to withstand fluid/gas pressures. In shell and tube heat exchangers, two closed process streams move across the unit; one move inside the tube and the other moves on the shell side. Convection and conduction allows heat to pass from hot stream to cold stream from the side of the tube side or from shell side.
As temperature variation between the process streams rise, heat exchange rate for every surface area unit also rises. Conversely, heat exchangers per surface are unit drops non-linearly as temperature difference between the two process streams drops. Increasing the effective surface area of the entire system helps in maintenance of the total transfer of heat between two streams although eventually the system reaches a point where extra surface area has no effect on extra heat transfer.
The other variable which affects heat exchange in shell and tube exchanger is each process stream’s velocity. This velocity directly contributes to a rise in convection cold process and hot process streams. Raising the velocity also raises heat exchange, more especially, in countercurrent design. Finally, velocity increments are limited by maximum permitted for a specific metallurgy constituting shell or tube. For carbon steel, for instance, velocity cannot exceed 6 ft. /sec. whilst for the case of stainless and high-alloy steel; rate is 12 ft. /sec. for liquids. The three conventional types of shell and tube heat exchangers are parallel, cross flow and countercurrent flow types. The names are derived from the process stream directions in relation to each other. In countercurrent heat exchanger type, average temperature variation between the process streams is optimized over the exchanger’s length, showing the highest heat transfer rate efficiency over a surface area unit. With respect to existing temperature variations observed during operation, parallel heat exchangers exhibit the lowest heat transfer rates, and then cross flow heat exchangers, and finally, countercurrent heat exchangers. Counterflow and parallel heat exchangers are illustrated below, Figure 1: Counterflow and parallel heat exchangers The design of shell and tube heat exchanger depends on flow pattern through the respective heat exchanger. It is however the most widely used heat exchanger in industries and can adopt counter-flow, parallel flow or cross-flow pattern. However, heat transfer area is a major factor in design calculation. Theoretically though, shell and tube heat exchanger flow patter is conventionally not specifically counter-flow, or parallel. Rather, it incorporates a mixture of counter-flow, parallel flow and cross-flow. Log mean temperature variation, used for design of shell and tube heat exchanger, works best for varied flow patterns occurring in this kind of heat exchanger. Shell and tube heat exchangers Shell and tube heat exchangers in their various construction modifications are probably the most widespread and commonly used basic heat exchanger configuration in the process industries. The reasons for this general acceptance are several. The shell and tube heat exchanger provides a comparatively large ratio of heat transfer area to volume and weight. It provides this surface in a form which is relatively easy to construction in a wide range of sizes and which is mechanically rugged enough to withstand normal shop fabrication stresses, shipping and field erection stresses, and normal operating conditions. There are many modifications of the basic configuration, which can be used to solve special problems. The shell and tube exchanger can be reasonably easily cleaned, and those components most subject to failure - ...Download file to see next pagesRead More
Cite this document
  • APA
  • MLA
(“Shell and tube heat exchanger design Coursework”, n.d.)
Retrieved from https://studentshare.org/design-technology/1498811-shell-and-tube-heat-exchanger-design
(Shell and Tube Heat Exchanger Design Coursework)
“Shell and Tube Heat Exchanger Design Coursework”, n.d. https://studentshare.org/design-technology/1498811-shell-and-tube-heat-exchanger-design.
  • Cited: 0 times
Comments (0)
Click to create a comment or rate a document
Analisys of demand and supply affecting Shell Oil
The company’s performance has remained a casualty as the FTSE 100 wafted lower for a second straight day. The company’s expectations have been compromised ahead of release of full- year results that sent its B share 2 percent lower (Elder, 2012). The major forces driving the demand for oil include lower refining margins, higher upstream maintenance costs, exploration write-downs and a weak European gas market.
5 Pages(1250 words)Coursework
Heat and temperature
(Liboff, 1990) The addition of energy especially heat energy triggers particles to move faster while the removal of heat energy slows the particles down. Hence, if the state of heat energy of a system is known then the speed of its particles can be ascertained to a reasonable extent.
4 Pages(1000 words)Coursework
Multinational Corporation in Nigeria: Shell Petroleum Development Company
These are perceived to entail business enterprises that run their operations in several different countries (Ozoigbo & Chukuezi, 2011, p.380). Generally, these enterprises are headquartered in their parent or home countries, but they operate in several other countries.
8 Pages(2000 words)Coursework
Non-Structured R/C Buggy Body Shell
The word R/C has widely been used to imply remote controlled, as well as radio controlled, in which case remote controlled vehicles include a range of vehicles that are often linked to their controller via a wire. However, the current use of the word R/C is limited to vehicles that are controlled by the radio-frequency link (Boyce, P, Hunter, D, & Howlett, O, 2003).
9 Pages(2250 words)Coursework
Non-structured R/C Buggy Body Shell
What one wonders is all that concerns these R/C cars. Most certainly, Radio-controlled (R/C) cars are the model of cars or trucks that are self-powered. These cars are advantageous such that one is able to control them from a distance using a specialized transmitter (Driver, R, 1999).
9 Pages(2250 words)Coursework
Heat Exchangers
Sometimes the media is separated by a wall such that the fluids do not mix or get into direct contact. Heat exchangers have a broad area of use example being in ventilation, air conditioning, and space heating. As the fluid passes through the exchanger it either lose or absorb heat due to latent heat.
4 Pages(1000 words)Research Paper
Heat exchanger design project
The exchange system is designed such that the composition of the coolant is 100% Freon 12. In that regard, the inlet temperature of the system is 240K. The design is also to have the outlet temperature of the 100% Freon 12 being 300 K. For the Freon, the designed pressure at the inlet is 7atm.
10 Pages(2500 words)Coursework
Heat exchanger Experiment
Heat transfer through the circuits is through the metal plates and gasket which have holes for both hot and cold water to pass. The number of plates is proportional to heat transfer, but reduces the flow rate. Flow disturbers in the
16 Pages(4000 words)Coursework
Heat Exchanger Design
3 Pages(750 words)Assignment
Let us find you another Coursework on topic Shell and tube heat exchanger design for FREE!
Contact us:
Contact Us Now
FREE Mobile Apps:
  • About StudentShare
  • Testimonials
  • FAQ
  • Blog
  • Free Essays
  • New Essays
  • Essays
  • The Newest Essay Topics
  • Index samples by all dates
Join us:
Contact Us